

North Carolina Department of Environment and Natural Resources Division of Air Quality

Benzidine and salts

CAS 92-87-5

Current North Carolina AAL = 1.5 x 10⁻⁸ mg/m³ (annual, carcinogen)

AAL Documentation

Inhalation Unit Risk (IUR) 1 = 6.7 x 10^{-2} per μ g/m 3

Known human carcinogen by EPA, Group A AAL based on 10⁻⁶ risk

Linear Calculation

$$\frac{1}{6.7 \times 10^{-2} \text{ per } \mu\text{g/m}^3} = \frac{x}{1 \times 10^{-6}}$$

$$x = \frac{1 \times 10^{-6}}{6.7 \times 10^{-2}}$$

$$x = 1.5 \times 10^{-5} \, \mu g/m^3$$

AAL for benzidine and salts² = $1.5 \times 10^{-8} \text{ mg/m}^3$

This information has been reconstructed using the decision matrix established by the North Carolina Academy of Sciences Air Toxics Panel, September, 1986.

Final version- June 2013 (CMP)

¹ EPA Ambient Water Quality Criteria Document for Benzidine, 1980. EPA-440/5-80-023. Estimated from an oral cancer slope factor of 234.13(mg/kg-day)-¹ using standard conversion assumptions of 20 m³ daily breathing rate and 70 kg average body weight.

 $^{^{2}}$ 1 µg/m 3 = 10 $^{-3}$ mg/m 3